Introduction & Aim

- Vitamin D is a secosteroid hormone that regulates calcium and bone metabolism
- Previous studies have associated vitamin D deficiency with poor outcomes for various gastrointestinal diseases
- <u>Aim:</u> To evaluate inpatient outcomes in patients with concomitant vitamin D deficiency and cirrhosis

Methods

Data & Cohort

- 2001-2014 National Inpatient Sample (NIS)
- Diagnosis of cirrhosis with and without vitamin D deficiency[ICD-9 codes]

Baseline Characteristics Observed / Covariates

- Patient Demographics: Age, Race, Sex, Income Payer
- Hospital Characteristics: Teaching Status, Size, Region
- Clinical Features: Charlson comorbidities,, Admission Status, etiology of liver disease
- Assessed with Rao-Scott Chi-Squared and Man Whitney tests

Outcomes Assessment

- Primary Outcomes: Length of stay (LOS), Total hospital charges, routine vs non-routine dispos mortality
- Secondary Outcomes: decompensation complications rates
- Multivariable Poisson and logistic regression
- Controlled for baseline characteristic differences

RUTGERS

Impact of Vitamin D Deficiency on Outcomes in Patients Hospitalized for Cirrhosis: A **Propensity Score Matched Analysis**

Amrita Chawla¹, Suraj Pai¹, Nikolaos Pyrsopoulos² 1. Department of Medicine, Rutgers New Jersey Medical School 2. Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School

Results

Table 1. Baseline Characteristics Pre and Post Match

		Pre Match				Post Match		
Variable	Group	No Defvitd	Defvitd	Pvalue	No Defvitd	Defvitd	Pvalue	
		(N = 1114215)	(N = 4066)		(N = 3373)	(N = 3375)		
Age (Median)		54 (48 - 64)	58 (52 - 66)	0 **	58 (52 - 67)	58 (52 - 66)	0.867	
CCI (Median)		4 (2 - 5)	4 (4 - 6)	0 **	4 (4 - 6)	4 (4 - 6)	0.252	
Sex	Female	386016 (34.6%)	1830 (45%)	0 **	1444 (42.8%)	1524 (45.2%)	0.391	
	Male	728103 (65.3%)	2236 (55%)		1928 (57.2%)	1851 (54.8%)		
Race	Asian/Pac Is	16693 (1.5%)	58 (1.4%)	0.056	61 (1.8%)	58 (1.7%)	0.528	
	Black	84871 (7.6%)	320 (7.9%)		256 (7.6%)	305 (9%)		
	Hispanic	194746 (17.5%)	574 (14.1%)		494 (14.6%)	554 (16.4%)		
	Other	38771 (3.5%)	139 (3.4%)		143 (4.2%)	100 (3%)		
	White	602769 (54.1%)	2485 (61.1%)		2419 (71.7%)	2358 (69.9%)		
Elective	Elective	102389 (9.2%)	543 (13.4%)	0.001 **	356 (10.6%)	444 (13.2%)	0.174	
	Non-elective	1009283 (90.6%)	3508 (86.3%)		3017 (89.4%)	2931 (86.8%)		
Teaching Status	Rural	100657 (9%)	256 (6.3%)	0 **	233 (6.9%)	197 (5.8%)	0.689	
	Urban Nonteach	436734 (39.2%)	917 (22.6%)		838 (24.8%)	813 (24.1%)		
	Urban Teach	572800 (51.4%)	2806 (69%)		2301 (68.2%)	2365 (70.1%)		
Hospital Region	Midwest	197169 (17.7%)	1153 (28.4%)	0 **	702 (20.8%)	714 (21.2%)	0.993	
	Northeast	201632 (18.1%)	563 (13.8%)		547 (16.2%)	538 (15.9%)		
	South	462795 (41.5%)	1485 (36.5%)		1331 (39.5%)	1350 (40%)		
	West	252618 (22.7%)	865 (21.3%)		793 (23.5%)	773 (22.9%)		
Hepatitis C		220670 (19.8%)	588 (14.5%)	0.001 **	505 (15%)	520 (15.4%)	0.845	
Hepatitis B		22499 (2%)	40 (1%)	0.037 **	49 (1.5%)	40 (1.2%)	0.664	
Alcohol Liver Disease		687809 (61.7%)	2206 (54.3%)	0 **	1838 (54.5%)	1815 (53.8%)	0.782	
NAFLD		439277 (39.4%)	1951 (48%)	0 **	1599 (47.4%)	1625 (48.1%)	0.778	

	Table 2: Multiv	Table 2: Multivariable Regressions of Complications and In-hospital outcomes									
е,			Estimate	ConfInterval	Pvalue						
	Outcomes	Cost	1.759	(1.42 - 2.18)	<0.001*						
		Mortality	1.016	(0.61 - 1.7)	0.953						
•		Disposition	0.998	(0.8 - 1.24)	0.985						
		Length of Stay	1.297	(1.08 - 1.55)	0.005*						
			Estimate	confInterval	Pvalue						
าท-	Complications	Acute Kidney Injury	1.382	(1.07 - 1.78)	0.013*						
		Chronic Kidney Disease	1.309	(0.99 - 1.72)	0.055						
		Thromboembolism	1.461	(0.93 - 2.28)	0.096						
		Blood Transfusion	1.452	(1.12 - 1.88)	0.005*						
		Ascites	1.088	(0.86 - 1.38)	0.478						
l In-		Portal Vein Hypertension	0.901	(0.72 - 1.12)	0.345						
sition.		Hepatic Encephalopathy	1.35	(1.02 - 1.78)	0.034*						
,		Hepatorenal Syndrome	1.678	(1.09 - 2.58)	0.018*						
		Jaundice	1.204	(0.66 - 2.19)	0.543						
		Hepatocellular Carcinoma	1.636	(0.99 - 2.7)	0.055						
		Esophag Varice ex Bleeding	1.285	(0.98 - 1.69)	0.074						
		Esophag Varice Bleed	0.644	(0.48 - 0.86)	0.003*						
ces		Spontaneous Peritonitis	1.359	(0.68 - 2.71)	0.383						

- matched to controls

- respectively

- mention of bleeding was lower
- patients

RUTGERS

Results

4,066 patients with concomitant vitamin D deficiency and cirrhosis were identified and

• Pre-match, patients with concomitant disease were older (58 vs 54, p<0.001), more likely to be female (45% vs 35%, p<0.001), and more likely to have a CCI >= 5 (80.6% vs 69.8%, p<0.001)

• Concomitant disease was associated with higher total charges (\$36,781 vs \$29,089, p<0.001) and length of stay (5 vs 4 days, p<0.001), but there was no significant difference in mortality or disposition • After doubly robust regression adjustment, charges and LOS remained significantly higher (1.759, 95%) CI 1.42 – 2.18 and aOR: 1.297, 95% CI 1.08 – 1.55)

• Vitamin D deficiency was associated with higher prevalence rate of decompensation-associated complications including hepatorenal syndrome, hepatic encephalopathy, and acute kidney injury, but the odds of variceal bleeding were lower

Conclusion

Inpatients with concomitant cirrhosis and vitamin D deficiency have higher cost, LOS, and more decompensation complications • The observed rate of esophageal varices with

Additional research will be necessary to evaluate

the role of vitamin D in decompensated cirrhotic